Source code for paddlespeech.t2s.modules.losses

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Tuple

import librosa
import numpy as np
import paddle
from paddle import nn
from paddle.nn import functional as F
from scipy import signal
from scipy.stats import betabinom
from typeguard import check_argument_types

from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask
from paddlespeech.t2s.modules.predictor.duration_predictor import (
    DurationPredictorLoss,  # noqa: H301
)


# Losses for WaveRNN
[docs]def log_sum_exp(x): """ numerically stable log_sum_exp implementation that prevents overflow """ # TF ordering axis = len(x.shape) - 1 m = paddle.max(x, axis=axis) m2 = paddle.max(x, axis=axis, keepdim=True) return m + paddle.log(paddle.sum(paddle.exp(x - m2), axis=axis))
# It is adapted from https://github.com/r9y9/wavenet_vocoder/blob/master/wavenet_vocoder/mixture.py
[docs]def discretized_mix_logistic_loss(y_hat, y, num_classes=65536, log_scale_min=None, reduce=True): if log_scale_min is None: log_scale_min = float(np.log(1e-14)) y_hat = y_hat.transpose([0, 2, 1]) assert y_hat.dim() == 3 assert y_hat.shape[1] % 3 == 0 nr_mix = y_hat.shape[1] // 3 # (B x T x C) y_hat = y_hat.transpose([0, 2, 1]) # unpack parameters. (B, T, num_mixtures) x 3 logit_probs = y_hat[:, :, :nr_mix] means = y_hat[:, :, nr_mix:2 * nr_mix] log_scales = paddle.clip( y_hat[:, :, 2 * nr_mix:3 * nr_mix], min=log_scale_min) # B x T x 1 -> B x T x num_mixtures y = y.expand_as(means) centered_y = paddle.cast(y, dtype=paddle.get_default_dtype()) - means inv_stdv = paddle.exp(-log_scales) plus_in = inv_stdv * (centered_y + 1. / (num_classes - 1)) cdf_plus = F.sigmoid(plus_in) min_in = inv_stdv * (centered_y - 1. / (num_classes - 1)) cdf_min = F.sigmoid(min_in) # log probability for edge case of 0 (before scaling) # equivalent: torch.log(F.sigmoid(plus_in)) # softplus: log(1+ e^{-x}) log_cdf_plus = plus_in - F.softplus(plus_in) # log probability for edge case of 255 (before scaling) # equivalent: (1 - F.sigmoid(min_in)).log() log_one_minus_cdf_min = -F.softplus(min_in) # probability for all other cases cdf_delta = cdf_plus - cdf_min mid_in = inv_stdv * centered_y # log probability in the center of the bin, to be used in extreme cases # (not actually used in our code) log_pdf_mid = mid_in - log_scales - 2. * F.softplus(mid_in) # TODO: cdf_delta <= 1e-5 actually can happen. How can we choose the value # for num_classes=65536 case? 1e-7? not sure.. inner_inner_cond = cdf_delta > 1e-5 inner_inner_cond = paddle.cast( inner_inner_cond, dtype=paddle.get_default_dtype()) # inner_inner_out = inner_inner_cond * \ # paddle.log(paddle.clip(cdf_delta, min=1e-12)) + \ # (1. - inner_inner_cond) * (log_pdf_mid - np.log((num_classes - 1) / 2)) inner_inner_out = inner_inner_cond * paddle.log( paddle.clip(cdf_delta, min=1e-12)) + (1. - inner_inner_cond) * ( log_pdf_mid - np.log((num_classes - 1) / 2)) inner_cond = y > 0.999 inner_cond = paddle.cast(inner_cond, dtype=paddle.get_default_dtype()) inner_out = inner_cond * log_one_minus_cdf_min + (1. - inner_cond ) * inner_inner_out cond = y < -0.999 cond = paddle.cast(cond, dtype=paddle.get_default_dtype()) log_probs = cond * log_cdf_plus + (1. - cond) * inner_out log_probs = log_probs + F.log_softmax(logit_probs, -1) if reduce: return -paddle.mean(log_sum_exp(log_probs)) else: return -log_sum_exp(log_probs).unsqueeze(-1)
[docs]def sample_from_discretized_mix_logistic(y, log_scale_min=None): """ Sample from discretized mixture of logistic distributions Args: y(Tensor): (B, C, T) log_scale_min(float, optional): (Default value = None) Returns: Tensor: sample in range of [-1, 1]. """ if log_scale_min is None: log_scale_min = float(np.log(1e-14)) assert y.shape[1] % 3 == 0 nr_mix = y.shape[1] // 3 # (B, T, C) y = y.transpose([0, 2, 1]) logit_probs = y[:, :, :nr_mix] # sample mixture indicator from softmax temp = paddle.uniform( logit_probs.shape, dtype=logit_probs.dtype, min=1e-5, max=1.0 - 1e-5) temp = logit_probs - paddle.log(-paddle.log(temp)) argmax = paddle.argmax(temp, axis=-1) # (B, T) -> (B, T, nr_mix) one_hot = F.one_hot(argmax, nr_mix) one_hot = paddle.cast(one_hot, dtype=paddle.get_default_dtype()) # select logistic parameters means = paddle.sum(y[:, :, nr_mix:2 * nr_mix] * one_hot, axis=-1) log_scales = paddle.clip( paddle.sum(y[:, :, 2 * nr_mix:3 * nr_mix] * one_hot, axis=-1), min=log_scale_min) # sample from logistic & clip to interval # we don't actually round to the nearest 8bit value when sampling u = paddle.uniform(means.shape, min=1e-5, max=1.0 - 1e-5) x = means + paddle.exp(log_scales) * (paddle.log(u) - paddle.log(1. - u)) x = paddle.clip(x, min=-1., max=-1.) return x
# Loss for Tacotron2
[docs]class GuidedAttentionLoss(nn.Layer): """Guided attention loss function module. This module calculates the guided attention loss described in `Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention`_, which forces the attention to be diagonal. .. _`Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention`: https://arxiv.org/abs/1710.08969 """ def __init__(self, sigma=0.4, alpha=1.0, reset_always=True): """Initialize guided attention loss module. Args: sigma (float, optional): Standard deviation to control how close attention to a diagonal. alpha (float, optional): Scaling coefficient (lambda). reset_always (bool, optional): Whether to always reset masks. """ super().__init__() self.sigma = sigma self.alpha = alpha self.reset_always = reset_always self.guided_attn_masks = None self.masks = None def _reset_masks(self): self.guided_attn_masks = None self.masks = None
[docs] def forward(self, att_ws, ilens, olens): """Calculate forward propagation. Args: att_ws(Tensor): Batch of attention weights (B, T_max_out, T_max_in). ilens(Tensor(int64)): Batch of input lenghts (B,). olens(Tensor(int64)): Batch of output lenghts (B,). Returns: Tensor: Guided attention loss value. """ if self.guided_attn_masks is None: self.guided_attn_masks = self._make_guided_attention_masks(ilens, olens) if self.masks is None: self.masks = self._make_masks(ilens, olens) losses = self.guided_attn_masks * att_ws loss = paddle.mean( losses.masked_select(self.masks.broadcast_to(losses.shape))) if self.reset_always: self._reset_masks() return self.alpha * loss
def _make_guided_attention_masks(self, ilens, olens): n_batches = len(ilens) max_ilen = max(ilens) max_olen = max(olens) guided_attn_masks = paddle.zeros((n_batches, max_olen, max_ilen)) for idx, (ilen, olen) in enumerate(zip(ilens, olens)): guided_attn_masks[idx, :olen, : ilen] = self._make_guided_attention_mask( ilen, olen, self.sigma) return guided_attn_masks @staticmethod def _make_guided_attention_mask(ilen, olen, sigma): """Make guided attention mask. Examples ---------- >>> guided_attn_mask =_make_guided_attention(5, 5, 0.4) >>> guided_attn_mask.shape [5, 5] >>> guided_attn_mask tensor([[0.0000, 0.1175, 0.3935, 0.6753, 0.8647], [0.1175, 0.0000, 0.1175, 0.3935, 0.6753], [0.3935, 0.1175, 0.0000, 0.1175, 0.3935], [0.6753, 0.3935, 0.1175, 0.0000, 0.1175], [0.8647, 0.6753, 0.3935, 0.1175, 0.0000]]) >>> guided_attn_mask =_make_guided_attention(3, 6, 0.4) >>> guided_attn_mask.shape [6, 3] >>> guided_attn_mask tensor([[0.0000, 0.2934, 0.7506], [0.0831, 0.0831, 0.5422], [0.2934, 0.0000, 0.2934], [0.5422, 0.0831, 0.0831], [0.7506, 0.2934, 0.0000], [0.8858, 0.5422, 0.0831]]) """ grid_x, grid_y = paddle.meshgrid( paddle.arange(olen), paddle.arange(ilen)) grid_x = grid_x.cast(dtype=paddle.float32) grid_y = grid_y.cast(dtype=paddle.float32) return 1.0 - paddle.exp(-( (grid_y / ilen - grid_x / olen)**2) / (2 * (sigma**2))) @staticmethod def _make_masks(ilens, olens): """Make masks indicating non-padded part. Args: ilens(Tensor(int64) or List): Batch of lengths (B,). olens(Tensor(int64) or List): Batch of lengths (B,). Returns: Tensor: Mask tensor indicating non-padded part. Examples: >>> ilens, olens = [5, 2], [8, 5] >>> _make_mask(ilens, olens) tensor([[[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], [[1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]], dtype=paddle.uint8) """ # (B, T_in) in_masks = make_non_pad_mask(ilens) # (B, T_out) out_masks = make_non_pad_mask(olens) # (B, T_out, T_in) return paddle.logical_and( out_masks.unsqueeze(-1), in_masks.unsqueeze(-2))
[docs]class GuidedMultiHeadAttentionLoss(GuidedAttentionLoss): """Guided attention loss function module for multi head attention. Args: sigma (float, optional): Standard deviation to controlGuidedAttentionLoss how close attention to a diagonal. alpha (float, optional): Scaling coefficient (lambda). reset_always (bool, optional): Whether to always reset masks. """
[docs] def forward(self, att_ws, ilens, olens): """Calculate forward propagation. Args: att_ws(Tensor): Batch of multi head attention weights (B, H, T_max_out, T_max_in). ilens(Tensor): Batch of input lenghts (B,). olens(Tensor): Batch of output lenghts (B,). Returns: Tensor: Guided attention loss value. """ if self.guided_attn_masks is None: self.guided_attn_masks = ( self._make_guided_attention_masks(ilens, olens).unsqueeze(1)) if self.masks is None: self.masks = self._make_masks(ilens, olens).unsqueeze(1) losses = self.guided_attn_masks * att_ws loss = paddle.mean( losses.masked_select(self.masks.broadcast_to(losses.shape))) if self.reset_always: self._reset_masks() return self.alpha * loss
[docs]class Tacotron2Loss(nn.Layer): """Loss function module for Tacotron2.""" def __init__(self, use_masking=True, use_weighted_masking=False, bce_pos_weight=20.0): """Initialize Tactoron2 loss module. Args: use_masking (bool): Whether to apply masking for padded part in loss calculation. use_weighted_masking (bool): Whether to apply weighted masking in loss calculation. bce_pos_weight (float): Weight of positive sample of stop token. """ super().__init__() assert (use_masking != use_weighted_masking) or not use_masking self.use_masking = use_masking self.use_weighted_masking = use_weighted_masking # define criterions reduction = "none" if self.use_weighted_masking else "mean" self.l1_criterion = nn.L1Loss(reduction=reduction) self.mse_criterion = nn.MSELoss(reduction=reduction) self.bce_criterion = nn.BCEWithLogitsLoss( reduction=reduction, pos_weight=paddle.to_tensor(bce_pos_weight))
[docs] def forward(self, after_outs, before_outs, logits, ys, stop_labels, olens): """Calculate forward propagation. Args: after_outs(Tensor): Batch of outputs after postnets (B, Lmax, odim). before_outs(Tensor): Batch of outputs before postnets (B, Lmax, odim). logits(Tensor): Batch of stop logits (B, Lmax). ys(Tensor): Batch of padded target features (B, Lmax, odim). stop_labels(Tensor(int64)): Batch of the sequences of stop token labels (B, Lmax). olens(Tensor(int64)): Returns: Tensor: L1 loss value. Tensor: Mean square error loss value. Tensor: Binary cross entropy loss value. """ # make mask and apply it if self.use_masking: masks = make_non_pad_mask(olens).unsqueeze(-1) ys = ys.masked_select(masks.broadcast_to(ys.shape)) after_outs = after_outs.masked_select( masks.broadcast_to(after_outs.shape)) before_outs = before_outs.masked_select( masks.broadcast_to(before_outs.shape)) stop_labels = stop_labels.masked_select( masks[:, :, 0].broadcast_to(stop_labels.shape)) logits = logits.masked_select( masks[:, :, 0].broadcast_to(logits.shape)) # calculate loss l1_loss = self.l1_criterion(after_outs, ys) + self.l1_criterion( before_outs, ys) mse_loss = self.mse_criterion(after_outs, ys) + self.mse_criterion( before_outs, ys) bce_loss = self.bce_criterion(logits, stop_labels) # make weighted mask and apply it if self.use_weighted_masking: masks = make_non_pad_mask(olens).unsqueeze(-1) weights = masks.float() / masks.sum(axis=1, keepdim=True).float() out_weights = weights.divide( paddle.shape(ys)[0] * paddle.shape(ys)[2]) logit_weights = weights.divide(paddle.shape(ys)[0]) # apply weight l1_loss = l1_loss.multiply(out_weights) l1_loss = l1_loss.masked_select(masks.broadcast_to(l1_loss)).sum() mse_loss = mse_loss.multiply(out_weights) mse_loss = mse_loss.masked_select( masks.broadcast_to(mse_loss)).sum() bce_loss = bce_loss.multiply(logit_weights.squeeze(-1)) bce_loss = bce_loss.masked_select( masks.squeeze(-1).broadcast_to(bce_loss)).sum() return l1_loss, mse_loss, bce_loss
# Losses for GAN Vocoder
[docs]def stft(x, fft_size, hop_length=None, win_length=None, window='hann', center=True, pad_mode='reflect'): """Perform STFT and convert to magnitude spectrogram. Args: x(Tensor): Input signal tensor (B, T). fft_size(int): FFT size. hop_size(int): Hop size. win_length(int, optional): window (str, optional): (Default value = None) window(str, optional): Name of window function, see `scipy.signal.get_window` for more details. Defaults to "hann". center(bool, optional, optional): center (bool, optional): Whether to pad `x` to make that the :math:`t \times hop\\_length` at the center of :math:`t`-th frame. Default: `True`. pad_mode(str, optional, optional): (Default value = 'reflect') hop_length: (Default value = None) Returns: Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1). """ # calculate window window = signal.get_window(window, win_length, fftbins=True) window = paddle.to_tensor(window, dtype=x.dtype) x_stft = paddle.signal.stft( x, fft_size, hop_length, win_length, window=window, center=center, pad_mode=pad_mode) real = x_stft.real() imag = x_stft.imag() return paddle.sqrt(paddle.clip(real**2 + imag**2, min=1e-7)).transpose( [0, 2, 1])
[docs]class SpectralConvergenceLoss(nn.Layer): """Spectral convergence loss module.""" def __init__(self): """Initilize spectral convergence loss module.""" super().__init__()
[docs] def forward(self, x_mag, y_mag): """Calculate forward propagation. Args: x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). Returns: Tensor: Spectral convergence loss value. """ return paddle.norm( y_mag - x_mag, p="fro") / paddle.clip( paddle.norm(y_mag, p="fro"), min=1e-10)
[docs]class LogSTFTMagnitudeLoss(nn.Layer): """Log STFT magnitude loss module.""" def __init__(self, epsilon=1e-7): """Initilize los STFT magnitude loss module.""" super().__init__() self.epsilon = epsilon
[docs] def forward(self, x_mag, y_mag): """Calculate forward propagation. Args: x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). Returns: Tensor: Log STFT magnitude loss value. """ return F.l1_loss( paddle.log(paddle.clip(y_mag, min=self.epsilon)), paddle.log(paddle.clip(x_mag, min=self.epsilon)))
[docs]class STFTLoss(nn.Layer): """STFT loss module.""" def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann"): """Initialize STFT loss module.""" super().__init__() self.fft_size = fft_size self.shift_size = shift_size self.win_length = win_length self.window = window self.spectral_convergence_loss = SpectralConvergenceLoss() self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
[docs] def forward(self, x, y): """Calculate forward propagation. Args: x (Tensor): Predicted signal (B, T). y (Tensor): Groundtruth signal (B, T). Returns: Tensor: Spectral convergence loss value. Tensor: Log STFT magnitude loss value. """ x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window) y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window) sc_loss = self.spectral_convergence_loss(x_mag, y_mag) mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag) return sc_loss, mag_loss
[docs]class MultiResolutionSTFTLoss(nn.Layer): """Multi resolution STFT loss module.""" def __init__( self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240], window="hann", ): """Initialize Multi resolution STFT loss module. Args: fft_sizes (list): List of FFT sizes. hop_sizes (list): List of hop sizes. win_lengths (list): List of window lengths. window (str): Window function type. """ super().__init__() assert len(fft_sizes) == len(hop_sizes) == len(win_lengths) self.stft_losses = nn.LayerList() for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths): self.stft_losses.append(STFTLoss(fs, ss, wl, window))
[docs] def forward(self, x, y): """Calculate forward propagation. Args: x (Tensor): Predicted signal (B, T) or (B, #subband, T). y (Tensor): Groundtruth signal (B, T) or (B, #subband, T). Returns: Tensor: Multi resolution spectral convergence loss value. Tensor: Multi resolution log STFT magnitude loss value. """ if len(x.shape) == 3: # (B, C, T) -> (B x C, T) x = x.reshape([-1, x.shape[2]]) # (B, C, T) -> (B x C, T) y = y.reshape([-1, y.shape[2]]) sc_loss = 0.0 mag_loss = 0.0 for f in self.stft_losses: sc_l, mag_l = f(x, y) sc_loss += sc_l mag_loss += mag_l sc_loss /= len(self.stft_losses) mag_loss /= len(self.stft_losses) return sc_loss, mag_loss
[docs]class GeneratorAdversarialLoss(nn.Layer): """Generator adversarial loss module.""" def __init__( self, average_by_discriminators=True, loss_type="mse", ): """Initialize GeneratorAversarialLoss module.""" super().__init__() self.average_by_discriminators = average_by_discriminators assert loss_type in ["mse", "hinge"], f"{loss_type} is not supported." if loss_type == "mse": self.criterion = self._mse_loss else: self.criterion = self._hinge_loss
[docs] def forward(self, outputs): """Calcualate generator adversarial loss. Args: outputs (Tensor or List): Discriminator outputs or list of discriminator outputs. Returns: Tensor: Generator adversarial loss value. """ if isinstance(outputs, (tuple, list)): adv_loss = 0.0 for i, outputs_ in enumerate(outputs): if isinstance(outputs_, (tuple, list)): # case including feature maps outputs_ = outputs_[-1] adv_loss += self.criterion(outputs_) if self.average_by_discriminators: adv_loss /= i + 1 else: adv_loss = self.criterion(outputs) return adv_loss
def _mse_loss(self, x): return F.mse_loss(x, paddle.ones_like(x)) def _hinge_loss(self, x): return -x.mean()
[docs]class DiscriminatorAdversarialLoss(nn.Layer): """Discriminator adversarial loss module.""" def __init__( self, average_by_discriminators=True, loss_type="mse", ): """Initialize DiscriminatorAversarialLoss module.""" super().__init__() self.average_by_discriminators = average_by_discriminators assert loss_type in ["mse"], f"{loss_type} is not supported." if loss_type == "mse": self.fake_criterion = self._mse_fake_loss self.real_criterion = self._mse_real_loss
[docs] def forward(self, outputs_hat, outputs): """Calcualate discriminator adversarial loss. Args: outputs_hat (Tensor or list): Discriminator outputs or list of discriminator outputs calculated from generator outputs. outputs (Tensor or list): Discriminator outputs or list of discriminator outputs calculated from groundtruth. Returns: Tensor: Discriminator real loss value. Tensor: Discriminator fake loss value. """ if isinstance(outputs, (tuple, list)): real_loss = 0.0 fake_loss = 0.0 for i, (outputs_hat_, outputs_) in enumerate(zip(outputs_hat, outputs)): if isinstance(outputs_hat_, (tuple, list)): # case including feature maps outputs_hat_ = outputs_hat_[-1] outputs_ = outputs_[-1] real_loss += self.real_criterion(outputs_) fake_loss += self.fake_criterion(outputs_hat_) if self.average_by_discriminators: fake_loss /= i + 1 real_loss /= i + 1 else: real_loss = self.real_criterion(outputs) fake_loss = self.fake_criterion(outputs_hat) return real_loss, fake_loss
def _mse_real_loss(self, x): return F.mse_loss(x, paddle.ones_like(x)) def _mse_fake_loss(self, x): return F.mse_loss(x, paddle.zeros_like(x))
# Losses for SpeedySpeech # Structural Similarity Index Measure (SSIM)
[docs]def gaussian(window_size, sigma): gauss = paddle.to_tensor([ math.exp(-(x - window_size // 2)**2 / float(2 * sigma**2)) for x in range(window_size) ]) return gauss / gauss.sum()
[docs]def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = paddle.matmul(_1D_window, paddle.transpose( _1D_window, [1, 0])).unsqueeze([0, 1]) window = paddle.expand(_2D_window, [channel, 1, window_size, window_size]) return window
def _ssim(img1, img2, window, window_size, channel, size_average=True): mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d( img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq sigma2_sq = F.conv2d( img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq sigma12 = F.conv2d( img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 C1 = 0.01**2 C2 = 0.03**2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) \ / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() else: return ssim_map.mean(1).mean(1).mean(1)
[docs]def ssim(img1, img2, window_size=11, size_average=True): (_, channel, _, _) = img1.shape window = create_window(window_size, channel) return _ssim(img1, img2, window, window_size, channel, size_average)
[docs]def weighted_mean(input, weight): """Weighted mean. It can also be used as masked mean. Args: input(Tensor): The input tensor. weight(Tensor): The weight tensor with broadcastable shape with the input. Returns: Tensor: Weighted mean tensor with the same dtype as input. shape=(1,) """ weight = paddle.cast(weight, input.dtype) # paddle.Tensor.size is different with torch.size() and has been overrided in s2t.__init__ broadcast_ratio = input.numel() / weight.numel() return paddle.sum(input * weight) / (paddle.sum(weight) * broadcast_ratio)
[docs]def masked_l1_loss(prediction, target, mask): """Compute maksed L1 loss. Args: prediction(Tensor): The prediction. target(Tensor): The target. The shape should be broadcastable to ``prediction``. mask(Tensor): The mask. The shape should be broadcatable to the broadcasted shape of ``prediction`` and ``target``. Returns: Tensor: The masked L1 loss. shape=(1,) """ abs_error = F.l1_loss(prediction, target, reduction='none') loss = weighted_mean(abs_error, mask) return loss
[docs]class MelSpectrogram(nn.Layer): """Calculate Mel-spectrogram.""" def __init__( self, fs=22050, fft_size=1024, hop_size=256, win_length=None, window="hann", num_mels=80, fmin=80, fmax=7600, center=True, normalized=False, onesided=True, eps=1e-10, log_base=10.0, ): """Initialize MelSpectrogram module.""" super().__init__() self.fft_size = fft_size if win_length is None: self.win_length = fft_size else: self.win_length = win_length self.hop_size = hop_size self.center = center self.normalized = normalized self.onesided = onesided if window is not None and not hasattr(signal.windows, f"{window}"): raise ValueError(f"{window} window is not implemented") self.window = window self.eps = eps fmin = 0 if fmin is None else fmin fmax = fs / 2 if fmax is None else fmax melmat = librosa.filters.mel( sr=fs, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax, ) self.melmat = paddle.to_tensor(melmat.T) self.stft_params = { "n_fft": self.fft_size, "win_length": self.win_length, "hop_length": self.hop_size, "center": self.center, "normalized": self.normalized, "onesided": self.onesided, } self.log_base = log_base if self.log_base is None: self.log = paddle.log elif self.log_base == 2.0: self.log = paddle.log2 elif self.log_base == 10.0: self.log = paddle.log10 else: raise ValueError(f"log_base: {log_base} is not supported.")
[docs] def forward(self, x): """Calculate Mel-spectrogram. Args: x (Tensor): Input waveform tensor (B, T) or (B, 1, T). Returns: Tensor: Mel-spectrogram (B, #mels, #frames). """ if len(x.shape) == 3: # (B, C, T) -> (B*C, T) x = x.reshape([-1, paddle.shape(x)[2]]) if self.window is not None: # calculate window window = signal.get_window( self.window, self.win_length, fftbins=True) window = paddle.to_tensor(window, dtype=x.dtype) else: window = None x_stft = paddle.signal.stft(x, window=window, **self.stft_params) real = x_stft.real() imag = x_stft.imag() # (B, #freqs, #frames) -> (B, $frames, #freqs) real = real.transpose([0, 2, 1]) imag = imag.transpose([0, 2, 1]) x_power = real**2 + imag**2 x_amp = paddle.sqrt(paddle.clip(x_power, min=self.eps)) x_mel = paddle.matmul(x_amp, self.melmat) x_mel = paddle.clip(x_mel, min=self.eps) return self.log(x_mel).transpose([0, 2, 1])
[docs]class MelSpectrogramLoss(nn.Layer): """Mel-spectrogram loss.""" def __init__( self, fs=22050, fft_size=1024, hop_size=256, win_length=None, window="hann", num_mels=80, fmin=80, fmax=7600, center=True, normalized=False, onesided=True, eps=1e-10, log_base=10.0, ): """Initialize Mel-spectrogram loss.""" super().__init__() self.mel_spectrogram = MelSpectrogram( fs=fs, fft_size=fft_size, hop_size=hop_size, win_length=win_length, window=window, num_mels=num_mels, fmin=fmin, fmax=fmax, center=center, normalized=normalized, onesided=onesided, eps=eps, log_base=log_base, )
[docs] def forward(self, y_hat, y): """Calculate Mel-spectrogram loss. Args: y_hat(Tensor): Generated single tensor (B, 1, T). y(Tensor): Groundtruth single tensor (B, 1, T). Returns: Tensor: Mel-spectrogram loss value. """ mel_hat = self.mel_spectrogram(y_hat) mel = self.mel_spectrogram(y) mel_loss = F.l1_loss(mel_hat, mel) return mel_loss
[docs]class FeatureMatchLoss(nn.Layer): """Feature matching loss module.""" def __init__( self, average_by_layers=True, average_by_discriminators=True, include_final_outputs=False, ): """Initialize FeatureMatchLoss module.""" super().__init__() self.average_by_layers = average_by_layers self.average_by_discriminators = average_by_discriminators self.include_final_outputs = include_final_outputs
[docs] def forward(self, feats_hat, feats): """Calcualate feature matching loss. Args: feats_hat(list): List of list of discriminator outputs calcuated from generater outputs. feats(list): List of list of discriminator outputs Returns: Tensor: Feature matching loss value. """ feat_match_loss = 0.0 for i, (feats_hat_, feats_) in enumerate(zip(feats_hat, feats)): feat_match_loss_ = 0.0 if not self.include_final_outputs: feats_hat_ = feats_hat_[:-1] feats_ = feats_[:-1] for j, (feat_hat_, feat_) in enumerate(zip(feats_hat_, feats_)): feat_match_loss_ += F.l1_loss(feat_hat_, feat_.detach()) if self.average_by_layers: feat_match_loss_ /= j + 1 feat_match_loss += feat_match_loss_ if self.average_by_discriminators: feat_match_loss /= i + 1 return feat_match_loss
# loss for VITS
[docs]class KLDivergenceLoss(nn.Layer): """KL divergence loss."""
[docs] def forward( self, z_p: paddle.Tensor, logs_q: paddle.Tensor, m_p: paddle.Tensor, logs_p: paddle.Tensor, z_mask: paddle.Tensor, ) -> paddle.Tensor: """Calculate KL divergence loss. Args: z_p (Tensor): Flow hidden representation (B, H, T_feats). logs_q (Tensor): Posterior encoder projected scale (B, H, T_feats). m_p (Tensor): Expanded text encoder projected mean (B, H, T_feats). logs_p (Tensor): Expanded text encoder projected scale (B, H, T_feats). z_mask (Tensor): Mask tensor (B, 1, T_feats). Returns: Tensor: KL divergence loss. """ z_p = paddle.cast(z_p, 'float32') logs_q = paddle.cast(logs_q, 'float32') m_p = paddle.cast(m_p, 'float32') logs_p = paddle.cast(logs_p, 'float32') z_mask = paddle.cast(z_mask, 'float32') kl = logs_p - logs_q - 0.5 kl += 0.5 * ((z_p - m_p)**2) * paddle.exp(-2.0 * logs_p) kl = paddle.sum(kl * z_mask) loss = kl / paddle.sum(z_mask) return loss
# loss for ERNIE SAT
[docs]class MLMLoss(nn.Layer): def __init__(self, odim: int, vocab_size: int=0, lsm_weight: float=0.1, ignore_id: int=-1, text_masking: bool=False): super().__init__() if text_masking: self.text_mlm_loss = nn.CrossEntropyLoss(ignore_index=ignore_id) if lsm_weight > 50: self.l1_loss_func = nn.MSELoss() else: self.l1_loss_func = nn.L1Loss(reduction='none') self.text_masking = text_masking self.odim = odim self.vocab_size = vocab_size
[docs] def forward( self, speech: paddle.Tensor, before_outs: paddle.Tensor, after_outs: paddle.Tensor, masked_pos: paddle.Tensor, # for text_loss when text_masking == True text: paddle.Tensor=None, text_outs: paddle.Tensor=None, text_masked_pos: paddle.Tensor=None): xs_pad = speech mlm_loss_pos = masked_pos > 0 loss = paddle.sum( self.l1_loss_func( paddle.reshape(before_outs, (-1, self.odim)), paddle.reshape(xs_pad, (-1, self.odim))), axis=-1) if after_outs is not None: loss += paddle.sum( self.l1_loss_func( paddle.reshape(after_outs, (-1, self.odim)), paddle.reshape(xs_pad, (-1, self.odim))), axis=-1) mlm_loss = paddle.sum((loss * paddle.reshape( mlm_loss_pos, [-1]))) / paddle.sum((mlm_loss_pos) + 1e-10) text_mlm_loss = None if self.text_masking: assert text is not None assert text_outs is not None assert text_masked_pos is not None text_outs = paddle.reshape(text_outs, [-1, self.vocab_size]) text = paddle.reshape(text, [-1]) text_mlm_loss = self.text_mlm_loss(text_outs, text) text_masked_pos_reshape = paddle.reshape(text_masked_pos, [-1]) text_mlm_loss = paddle.sum( text_mlm_loss * text_masked_pos_reshape) / paddle.sum((text_masked_pos) + 1e-10) return mlm_loss, text_mlm_loss
[docs]class VarianceLoss(nn.Layer): def __init__(self, use_masking: bool=True, use_weighted_masking: bool=False): """Initialize JETS variance loss module. Args: use_masking (bool): Whether to apply masking for padded part in loss calculation. use_weighted_masking (bool): Whether to weighted masking in loss calculation. """ assert check_argument_types() super().__init__() assert (use_masking != use_weighted_masking) or not use_masking self.use_masking = use_masking self.use_weighted_masking = use_weighted_masking # define criterions reduction = "none" if self.use_weighted_masking else "mean" self.mse_criterion = nn.MSELoss(reduction=reduction) self.duration_criterion = DurationPredictorLoss(reduction=reduction)
[docs] def forward( self, d_outs: paddle.Tensor, ds: paddle.Tensor, p_outs: paddle.Tensor, ps: paddle.Tensor, e_outs: paddle.Tensor, es: paddle.Tensor, ilens: paddle.Tensor, ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]: """Calculate forward propagation. Args: d_outs (LongTensor): Batch of outputs of duration predictor (B, T_text). ds (LongTensor): Batch of durations (B, T_text). p_outs (Tensor): Batch of outputs of pitch predictor (B, T_text, 1). ps (Tensor): Batch of target token-averaged pitch (B, T_text, 1). e_outs (Tensor): Batch of outputs of energy predictor (B, T_text, 1). es (Tensor): Batch of target token-averaged energy (B, T_text, 1). ilens (LongTensor): Batch of the lengths of each input (B,). Returns: Tensor: Duration predictor loss value. Tensor: Pitch predictor loss value. Tensor: Energy predictor loss value. """ # apply mask to remove padded part if self.use_masking: duration_masks = paddle.to_tensor( make_non_pad_mask(ilens), place=ds.place) d_outs = d_outs.masked_select(duration_masks) ds = ds.masked_select(duration_masks) pitch_masks = paddle.to_tensor( make_non_pad_mask(ilens).unsqueeze(-1), place=ds.place) p_outs = p_outs.masked_select(pitch_masks) e_outs = e_outs.masked_select(pitch_masks) ps = ps.masked_select(pitch_masks) es = es.masked_select(pitch_masks) # calculate loss duration_loss = self.duration_criterion(d_outs, ds) pitch_loss = self.mse_criterion(p_outs, ps) energy_loss = self.mse_criterion(e_outs, es) # make weighted mask and apply it if self.use_weighted_masking: duration_masks = paddle.to_tensor( make_non_pad_mask(ilens), place=ds.place) duration_weights = (duration_masks.float() / duration_masks.sum(dim=1, keepdim=True).float()) duration_weights /= ds.size(0) # apply weight duration_loss = (duration_loss.mul(duration_weights).masked_select( duration_masks).sum()) pitch_masks = duration_masks.unsqueeze(-1) pitch_weights = duration_weights.unsqueeze(-1) pitch_loss = pitch_loss.mul(pitch_weights).masked_select( pitch_masks).sum() energy_loss = ( energy_loss.mul(pitch_weights).masked_select(pitch_masks).sum()) return duration_loss, pitch_loss, energy_loss
[docs]class ForwardSumLoss(nn.Layer): """ https://openreview.net/forum?id=0NQwnnwAORi """ def __init__(self, cache_prior: bool=True): """ Args: cache_prior (bool): Whether to cache beta-binomial prior """ super().__init__() self.cache_prior = cache_prior self._cache = {}
[docs] def forward( self, log_p_attn: paddle.Tensor, ilens: paddle.Tensor, olens: paddle.Tensor, blank_prob: float=np.e**-1, ) -> paddle.Tensor: """ Args: log_p_attn (Tensor): Batch of log probability of attention matrix (B, T_feats, T_text). ilens (Tensor): Batch of the lengths of each input (B,). olens (Tensor): Batch of the lengths of each target (B,). blank_prob (float): Blank symbol probability Returns: Tensor: forwardsum loss value. """ B = log_p_attn.shape[0] # add beta-binomial prior bb_prior = self._generate_prior(ilens, olens) bb_prior = paddle.to_tensor( bb_prior, dtype=log_p_attn.dtype, place=log_p_attn.place) log_p_attn = log_p_attn + bb_prior # a row must be added to the attention matrix to account for blank token of CTC loss # (B,T_feats,T_text+1) log_p_attn_pd = F.pad( log_p_attn, (0, 0, 0, 0, 1, 0), value=np.log(blank_prob)) loss = 0 for bidx in range(B): # construct target sequnece. # Every text token is mapped to a unique sequnece number. target_seq = paddle.arange( 1, ilens[bidx] + 1, dtype="int32").unsqueeze(0) cur_log_p_attn_pd = log_p_attn_pd[bidx, :olens[bidx], :ilens[ bidx] + 1].unsqueeze(1) # (T_feats,1,T_text+1) # The input of ctc_loss API need to be fixed loss += F.ctc_loss( log_probs=cur_log_p_attn_pd, labels=target_seq, input_lengths=olens[bidx:bidx + 1], label_lengths=ilens[bidx:bidx + 1]) loss = loss / B return loss
def _generate_prior(self, text_lengths, feats_lengths, w=1) -> paddle.Tensor: """Generate alignment prior formulated as beta-binomial distribution Args: text_lengths (Tensor): Batch of the lengths of each input (B,). feats_lengths (Tensor): Batch of the lengths of each target (B,). w (float): Scaling factor; lower -> wider the width Returns: Tensor: Batched 2d static prior matrix (B, T_feats, T_text) """ B = len(text_lengths) T_text = text_lengths.max() T_feats = feats_lengths.max() bb_prior = paddle.full((B, T_feats, T_text), fill_value=-np.inf) for bidx in range(B): T = feats_lengths[bidx].item() N = text_lengths[bidx].item() key = str(T) + ',' + str(N) if self.cache_prior and key in self._cache: prob = self._cache[key] else: alpha = w * np.arange(1, T + 1, dtype=float) # (T,) beta = w * np.array([T - t + 1 for t in alpha]) k = np.arange(N) batched_k = k[..., None] # (N,1) prob = betabinom.pmf(batched_k, N, alpha, beta) # (N,T) # store cache if self.cache_prior and key not in self._cache: self._cache[key] = prob prob = paddle.to_tensor( prob, place=text_lengths.place, dtype="float32").transpose( (1, 0)) # -> (T,N) bb_prior[bidx, :T, :N] = prob return bb_prior