Source code for paddlespeech.vector.cluster.plda

# Copyright (c) 2022 PaddlePaddle and SpeechBrain Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A popular speaker recognition/diarization model (LDA and PLDA).

Relevant Papers
 - This implementation of PLDA is based on the following papers.

 - PLDA model Training
    * Ye Jiang et. al, "PLDA Modeling in I-Vector and Supervector Space for Speaker Verification," in Interspeech, 2012.
    * Patrick Kenny et. al, "PLDA for speaker verification with utterances of arbitrary duration," in ICASSP, 2013.

 - PLDA scoring (fast scoring)
    * Daniel Garcia-Romero et. al, “Analysis of i-vector length normalization in speaker recognition systems,” in Interspeech, 2011.
    * Weiwei-LIN et. al, "Fast Scoring for PLDA with Uncertainty Propagation," in Odyssey, 2016.
    * Kong Aik Lee et. al, "Multi-session PLDA Scoring of I-vector for Partially Open-Set Speaker Detection," in Interspeech 2013.

Credits
    This code is adapted from: https://git-lium.univ-lemans.fr/Larcher/sidekit
"""
import copy
import pickle

import numpy
from scipy import linalg

from paddlespeech.vector.cluster.diarization import EmbeddingMeta


[docs]def ismember(list1, list2): c = [item in list2 for item in list1] return c
[docs]class Ndx: """ A class that encodes trial index information. It has a list of model names and a list of test segment names and a matrix indicating which combinations of model and test segment are trials of interest. Arguments --------- modelset : list List of unique models in a ndarray. segset : list List of unique test segments in a ndarray. trialmask : 2D ndarray of bool. Rows correspond to the models and columns to the test segments. True, if the trial is of interest. """ def __init__(self, ndx_file_name="", models=numpy.array([]), testsegs=numpy.array([])): """ Initialize a Ndx object by loading information from a file. Arguments --------- ndx_file_name : str Name of the file to load. """ self.modelset = numpy.empty(0, dtype="|O") self.segset = numpy.empty(0, dtype="|O") self.trialmask = numpy.array([], dtype="bool") if ndx_file_name == "": # This is needed to make sizes same d = models.shape[0] - testsegs.shape[0] if d != 0: if d > 0: last = str(testsegs[-1]) pad = numpy.array([last] * d) testsegs = numpy.hstack((testsegs, pad)) # pad = testsegs[-d:] # testsegs = numpy.concatenate((testsegs, pad), axis=1) else: d = abs(d) last = str(models[-1]) pad = numpy.array([last] * d) models = numpy.hstack((models, pad)) # pad = models[-d:] # models = numpy.concatenate((models, pad), axis=1) modelset = numpy.unique(models) segset = numpy.unique(testsegs) trialmask = numpy.zeros( (modelset.shape[0], segset.shape[0]), dtype="bool") for m in range(modelset.shape[0]): segs = testsegs[numpy.array(ismember(models, modelset[m]))] trialmask[m, ] = ismember(segset, segs) # noqa E231 self.modelset = modelset self.segset = segset self.trialmask = trialmask assert self.validate(), "Wrong Ndx format" else: ndx = Ndx.read(ndx_file_name) self.modelset = ndx.modelset self.segset = ndx.segset self.trialmask = ndx.trialmask
[docs] def save_ndx_object(self, output_file_name): with open(output_file_name, "wb") as output: pickle.dump(self, output, pickle.HIGHEST_PROTOCOL)
[docs] def filter(self, modlist, seglist, keep): """ Removes some of the information in an Ndx. Useful for creating a gender specific Ndx from a pooled gender Ndx. Depending on the value of \'keep\', the two input lists indicate the strings to retain or the strings to discard. Arguments --------- modlist : array A cell array of strings which will be compared with the modelset of 'inndx'. seglist : array A cell array of strings which will be compared with the segset of 'inndx'. keep : bool Indicating whether modlist and seglist are the models to keep or discard. """ if keep: keepmods = modlist keepsegs = seglist else: keepmods = diff(self.modelset, modlist) keepsegs = diff(self.segset, seglist) keepmodidx = numpy.array(ismember(self.modelset, keepmods)) keepsegidx = numpy.array(ismember(self.segset, keepsegs)) outndx = Ndx() outndx.modelset = self.modelset[keepmodidx] outndx.segset = self.segset[keepsegidx] tmp = self.trialmask[numpy.array(keepmodidx), :] outndx.trialmask = tmp[:, numpy.array(keepsegidx)] assert outndx.validate, "Wrong Ndx format" if self.modelset.shape[0] > outndx.modelset.shape[0]: print( "Number of models reduced from %d to %d" % self.modelset.shape[0], outndx.modelset.shape[0], ) if self.segset.shape[0] > outndx.segset.shape[0]: print( "Number of test segments reduced from %d to %d", self.segset.shape[0], outndx.segset.shape[0], ) return outndx
[docs] def validate(self): """ Checks that an object of type Ndx obeys certain rules that must always be true. Returns a boolean value indicating whether the object is valid """ ok = isinstance(self.modelset, numpy.ndarray) ok &= isinstance(self.segset, numpy.ndarray) ok &= isinstance(self.trialmask, numpy.ndarray) ok &= self.modelset.ndim == 1 ok &= self.segset.ndim == 1 ok &= self.trialmask.ndim == 2 ok &= self.trialmask.shape == (self.modelset.shape[0], self.segset.shape[0], ) return ok
[docs]class Scores: """ A class for storing scores for trials. The modelset and segset fields are lists of model and test segment names respectively. The element i,j of scoremat and scoremask corresponds to the trial involving model i and test segment j. Arguments --------- modelset : list List of unique models in a ndarray. segset : list List of unique test segments in a ndarray. scoremask : 2D ndarray of bool Indicates the trials of interest, i.e., the entry i,j in scoremat should be ignored if scoremask[i,j] is False. scoremat : 2D ndarray Scores matrix. """ def __init__(self, scores_file_name=""): """ Initialize a Scores object by loading information from a file HDF5 format. Arguments --------- scores_file_name : str Name of the file to load. """ self.modelset = numpy.empty(0, dtype="|O") self.segset = numpy.empty(0, dtype="|O") self.scoremask = numpy.array([], dtype="bool") self.scoremat = numpy.array([]) if scores_file_name == "": pass else: tmp = Scores.read(scores_file_name) self.modelset = tmp.modelset self.segset = tmp.segset self.scoremask = tmp.scoremask self.scoremat = tmp.scoremat def __repr__(self): ch = "modelset:\n" ch += self.modelset + "\n" ch += "segset:\n" ch += self.segset + "\n" ch += "scoremask:\n" ch += self.scoremask.__repr__() + "\n" ch += "scoremat:\n" ch += self.scoremat.__repr__() + "\n"
[docs]def fa_model_loop( batch_start, mini_batch_indices, factor_analyser, stat0, stats, e_h, e_hh, ): """ A function for PLDA estimation. Arguments --------- batch_start : int Index to start at in the list. mini_batch_indices : list Indices of the elements in the list (should start at zero). factor_analyser : instance of PLDA class PLDA class object. stat0 : tensor Matrix of zero-order statistics. stats: tensor Matrix of first-order statistics. e_h : tensor An accumulator matrix. e_hh: tensor An accumulator matrix. """ rank = factor_analyser.F.shape[1] if factor_analyser.Sigma.ndim == 2: A = factor_analyser.F.T.dot(factor_analyser.F) inv_lambda_unique = dict() for sess in numpy.unique(stat0[:, 0]): inv_lambda_unique[sess] = linalg.inv(sess * A + numpy.eye(A.shape[ 0])) tmp = numpy.zeros( (factor_analyser.F.shape[1], factor_analyser.F.shape[1]), dtype=numpy.float64, ) for idx in mini_batch_indices: if factor_analyser.Sigma.ndim == 1: inv_lambda = linalg.inv( numpy.eye(rank) + (factor_analyser.F.T * stat0[ idx + batch_start, :]).dot(factor_analyser.F)) else: inv_lambda = inv_lambda_unique[stat0[idx + batch_start, 0]] aux = factor_analyser.F.T.dot(stats[idx + batch_start, :]) numpy.dot(aux, inv_lambda, out=e_h[idx]) e_hh[idx] = inv_lambda + numpy.outer(e_h[idx], e_h[idx], tmp)
def _check_missing_model(enroll, test, ndx): # Remove missing models and test segments clean_ndx = ndx.filter(enroll.modelset, test.segset, True) # Align EmbeddingMeta to match the clean_ndx enroll.align_models(clean_ndx.modelset) test.align_segments(clean_ndx.segset) return clean_ndx
[docs]class PLDA: """ A class to train PLDA model from embeddings. The input is in paddlespeech.vector.cluster.diarization.EmbeddingMeta format. Trains a simplified PLDA model no within-class covariance matrix but full residual covariance matrix. Arguments --------- mean : tensor Mean of the vectors. F : tensor Eigenvoice matrix. Sigma : tensor Residual matrix. """ def __init__( self, mean=None, F=None, Sigma=None, rank_f=100, nb_iter=10, scaling_factor=1.0, ): self.mean = None self.F = None self.Sigma = None self.rank_f = rank_f self.nb_iter = nb_iter self.scaling_factor = scaling_factor if mean is not None: self.mean = mean if F is not None: self.F = F if Sigma is not None: self.Sigma = Sigma
[docs] def plda( self, emb_meta=None, output_file_name=None, ): """ Trains PLDA model with no within class covariance matrix but full residual covariance matrix. Arguments --------- emb_meta : paddlespeech.vector.cluster.diarization.EmbeddingMeta Contains vectors and meta-information to perform PLDA rank_f : int Rank of the between-class covariance matrix. nb_iter : int Number of iterations to run. scaling_factor : float Scaling factor to downscale statistics (value between 0 and 1). output_file_name : str Name of the output file where to store PLDA model. """ # Dimension of the vector (x-vectors stored in stats) vect_size = emb_meta.stats.shape[1] # Initialize mean and residual covariance from the training data self.mean = emb_meta.get_mean_stats() self.Sigma = emb_meta.get_total_covariance_stats() # Sum stat0 and stat1 for each speaker model model_shifted_stat, session_per_model = emb_meta.sum_stat_per_model() # Number of speakers (classes) in training set class_nb = model_shifted_stat.modelset.shape[0] # Multiply statistics by scaling_factor model_shifted_stat.stat0 *= self.scaling_factor model_shifted_stat.stats *= self.scaling_factor session_per_model *= self.scaling_factor # Covariance for stats sigma_obs = emb_meta.get_total_covariance_stats() evals, evecs = linalg.eigh(sigma_obs) # Initial F (eigen voice matrix) from rank idx = numpy.argsort(evals)[::-1] evecs = evecs.real[:, idx[:self.rank_f]] self.F = evecs[:, :self.rank_f] # Estimate PLDA model by iterating the EM algorithm for it in range(self.nb_iter): # E-step # Copy stats as they will be whitened with a different Sigma for each iteration local_stat = copy.deepcopy(model_shifted_stat) # Whiten statistics (with the new mean and Sigma) local_stat.whiten_stats(self.mean, self.Sigma) # Whiten the EigenVoice matrix eigen_values, eigen_vectors = linalg.eigh(self.Sigma) ind = eigen_values.real.argsort()[::-1] eigen_values = eigen_values.real[ind] eigen_vectors = eigen_vectors.real[:, ind] sqr_inv_eval_sigma = 1 / numpy.sqrt(eigen_values.real) sqr_inv_sigma = numpy.dot(eigen_vectors, numpy.diag(sqr_inv_eval_sigma)) self.F = sqr_inv_sigma.T.dot(self.F) # Replicate self.stat0 index_map = numpy.zeros(vect_size, dtype=int) _stat0 = local_stat.stat0[:, index_map] e_h = numpy.zeros((class_nb, self.rank_f)) e_hh = numpy.zeros((class_nb, self.rank_f, self.rank_f)) # loop on model id's fa_model_loop( batch_start=0, mini_batch_indices=numpy.arange(class_nb), factor_analyser=self, stat0=_stat0, stats=local_stat.stats, e_h=e_h, e_hh=e_hh, ) # Accumulate for minimum divergence step _R = numpy.sum(e_hh, axis=0) / session_per_model.shape[0] _C = e_h.T.dot(local_stat.stats).dot(linalg.inv(sqr_inv_sigma)) _A = numpy.einsum("ijk,i->jk", e_hh, local_stat.stat0.squeeze()) # M-step self.F = linalg.solve(_A, _C).T # Update the residual covariance self.Sigma = sigma_obs - self.F.dot(_C) / session_per_model.sum() # Minimum Divergence step self.F = self.F.dot(linalg.cholesky(_R))
[docs] def scoring( self, enroll, test, ndx, test_uncertainty=None, Vtrans=None, p_known=0.0, scaling_factor=1.0, check_missing=True, ): """ Compute the PLDA scores between to sets of vectors. The list of trials to perform is given in an Ndx object. PLDA matrices have to be pre-computed. i-vectors/x-vectors are supposed to be whitened before. Arguments --------- enroll : paddlespeech.vector.cluster.diarization.EmbeddingMeta A EmbeddingMeta in which stats are xvectors. test : paddlespeech.vector.cluster.diarization.EmbeddingMeta A EmbeddingMeta in which stats are xvectors. ndx : paddlespeech.vector.cluster.plda.Ndx An Ndx object defining the list of trials to perform. p_known : float Probability of having a known speaker for open-set identification case (=1 for the verification task and =0 for the closed-set case). check_missing : bool If True, check that all models and segments exist. """ enroll_ctr = copy.deepcopy(enroll) test_ctr = copy.deepcopy(test) # Remove missing models and test segments if check_missing: clean_ndx = _check_missing_model(enroll_ctr, test_ctr, ndx) else: clean_ndx = ndx # Center the i-vectors around the PLDA mean enroll_ctr.center_stats(self.mean) test_ctr.center_stats(self.mean) # Compute constant component of the PLDA distribution invSigma = linalg.inv(self.Sigma) I_spk = numpy.eye(self.F.shape[1], dtype="float") K = self.F.T.dot(invSigma * scaling_factor).dot(self.F) K1 = linalg.inv(K + I_spk) K2 = linalg.inv(2 * K + I_spk) # Compute the Gaussian distribution constant alpha1 = numpy.linalg.slogdet(K1)[1] alpha2 = numpy.linalg.slogdet(K2)[1] plda_cst = alpha2 / 2.0 - alpha1 # Compute intermediate matrices Sigma_ac = numpy.dot(self.F, self.F.T) Sigma_tot = Sigma_ac + self.Sigma Sigma_tot_inv = linalg.inv(Sigma_tot) Tmp = linalg.inv(Sigma_tot - Sigma_ac.dot(Sigma_tot_inv).dot(Sigma_ac)) Phi = Sigma_tot_inv - Tmp Psi = Sigma_tot_inv.dot(Sigma_ac).dot(Tmp) # Compute the different parts of PLDA score model_part = 0.5 * numpy.einsum("ij, ji->i", enroll_ctr.stats.dot(Phi), enroll_ctr.stats.T) seg_part = 0.5 * numpy.einsum("ij, ji->i", test_ctr.stats.dot(Phi), test_ctr.stats.T) # Compute verification scores score = Scores() # noqa F821 score.modelset = clean_ndx.modelset score.segset = clean_ndx.segset score.scoremask = clean_ndx.trialmask score.scoremat = model_part[:, numpy.newaxis] + seg_part + plda_cst score.scoremat += enroll_ctr.stats.dot(Psi).dot(test_ctr.stats.T) score.scoremat *= scaling_factor # Case of open-set identification, we compute the log-likelihood # by taking into account the probability of having a known impostor # or an out-of set class if p_known != 0: N = score.scoremat.shape[0] open_set_scores = numpy.empty(score.scoremat.shape) tmp = numpy.exp(score.scoremat) for ii in range(N): # open-set term open_set_scores[ii, :] = score.scoremat[ii, :] - numpy.log( p_known * tmp[~(numpy.arange(N) == ii)].sum(axis=0) / ( N - 1) + (1 - p_known)) score.scoremat = open_set_scores return score
if __name__ == '__main__': import random dim, N, n_spkrs = 10, 100, 10 train_xv = numpy.random.rand(N, dim) md = ['md' + str(random.randrange(1, n_spkrs, 1)) for i in range(N)] # spk modelset = numpy.array(md, dtype="|O") sg = ['sg' + str(i) for i in range(N)] # utt segset = numpy.array(sg, dtype="|O") stat0 = numpy.array([[1.0]] * N) xvectors_stat = EmbeddingMeta( modelset=modelset, segset=segset, stats=train_xv) # Training PLDA model: M ~ (mean, F, Sigma) plda = PLDA(rank_f=5) plda.plda(xvectors_stat) print(plda.mean.shape) #(10,) print(plda.F.shape) #(10, 5) print(plda.Sigma.shape) #(10, 10) # Enrollment (20 utts), en_N = 20 en_xv = numpy.random.rand(en_N, dim) en_sgs = ['en' + str(i) for i in range(en_N)] en_sets = numpy.array(en_sgs, dtype="|O") en_stat = EmbeddingMeta(modelset=en_sets, segset=en_sets, stats=en_xv) # Test (30 utts) te_N = 30 te_xv = numpy.random.rand(te_N, dim) te_sgs = ['te' + str(i) for i in range(te_N)] te_sets = numpy.array(te_sgs, dtype="|O") te_stat = EmbeddingMeta(modelset=te_sets, segset=te_sets, stats=te_xv) ndx = Ndx(models=en_sets, testsegs=te_sets) # trials # PLDA Scoring scores_plda = plda.scoring(en_stat, te_stat, ndx) print(scores_plda.scoremat.shape) #(20, 30)