paddlespeech.t2s.models.vits.residual_coupling module

Residual affine coupling modules in VITS.

This code is based on https://github.com/jaywalnut310/vits.

class paddlespeech.t2s.models.vits.residual_coupling.ResidualAffineCouplingBlock(in_channels: int = 192, hidden_channels: int = 192, flows: int = 4, kernel_size: int = 5, base_dilation: int = 1, layers: int = 4, global_channels: int = -1, dropout_rate: float = 0.0, use_weight_norm: bool = True, bias: bool = True, use_only_mean: bool = True)[source]

Bases: Layer

Residual affine coupling block module.

This is a module of residual affine coupling block, which used as "Flow" in Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech.

Methods

__call__(*inputs, **kwargs)

Call self as a function.

add_parameter(name, parameter)

Adds a Parameter instance.

add_sublayer(name, sublayer)

Adds a sub Layer instance.

apply(fn)

Applies fn recursively to every sublayer (as returned by .sublayers()) as well as self.

buffers([include_sublayers])

Returns a list of all buffers from current layer and its sub-layers.

children()

Returns an iterator over immediate children layers.

clear_gradients()

Clear the gradients of all parameters for this layer.

create_parameter(shape[, attr, dtype, ...])

Create parameters for this layer.

create_tensor([name, persistable, dtype])

Create Tensor for this layer.

create_variable([name, persistable, dtype])

Create Tensor for this layer.

eval()

Sets this Layer and all its sublayers to evaluation mode.

extra_repr()

Extra representation of this layer, you can have custom implementation of your own layer.

forward(x, x_mask[, g, inverse])

Calculate forward propagation.

full_name()

Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__

load_dict(state_dict[, use_structured_name])

Set parameters and persistable buffers from state_dict.

named_buffers([prefix, include_sublayers])

Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.

named_children()

Returns an iterator over immediate children layers, yielding both the name of the layer as well as the layer itself.

named_parameters([prefix, include_sublayers])

Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

named_sublayers([prefix, include_self, ...])

Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.

parameters([include_sublayers])

Returns a list of all Parameters from current layer and its sub-layers.

register_buffer(name, tensor[, persistable])

Registers a tensor as buffer into the layer.

register_forward_post_hook(hook)

Register a forward post-hook for Layer.

register_forward_pre_hook(hook)

Register a forward pre-hook for Layer.

set_dict(state_dict[, use_structured_name])

Set parameters and persistable buffers from state_dict.

set_state_dict(state_dict[, use_structured_name])

Set parameters and persistable buffers from state_dict.

state_dict([destination, include_sublayers, ...])

Get all parameters and persistable buffers of current layer and its sub-layers.

sublayers([include_self])

Returns a list of sub layers.

to([device, dtype, blocking])

Cast the parameters and buffers of Layer by the give device, dtype and blocking.

to_static_state_dict([destination, ...])

Get all parameters and buffers of current layer and its sub-layers.

train()

Sets this Layer and all its sublayers to training mode.

backward

register_state_dict_hook

forward(x: Tensor, x_mask: Tensor, g: Optional[Tensor] = None, inverse: bool = False) Tensor[source]

Calculate forward propagation.

Args:
x (Tensor):

Input tensor (B, in_channels, T).

x_mask (Tensor):

Length tensor (B, 1, T).

g (Optional[Tensor]):

Global conditioning tensor (B, global_channels, 1).

inverse (bool):

Whether to inverse the flow.

Returns:

Tensor: Output tensor (B, in_channels, T).

class paddlespeech.t2s.models.vits.residual_coupling.ResidualAffineCouplingLayer(in_channels: int = 192, hidden_channels: int = 192, kernel_size: int = 5, base_dilation: int = 1, layers: int = 5, stacks: int = 1, global_channels: int = -1, dropout_rate: float = 0.0, use_weight_norm: bool = True, bias: bool = True, use_only_mean: bool = True)[source]

Bases: Layer

Residual affine coupling layer.

Methods

__call__(*inputs, **kwargs)

Call self as a function.

add_parameter(name, parameter)

Adds a Parameter instance.

add_sublayer(name, sublayer)

Adds a sub Layer instance.

apply(fn)

Applies fn recursively to every sublayer (as returned by .sublayers()) as well as self.

buffers([include_sublayers])

Returns a list of all buffers from current layer and its sub-layers.

children()

Returns an iterator over immediate children layers.

clear_gradients()

Clear the gradients of all parameters for this layer.

create_parameter(shape[, attr, dtype, ...])

Create parameters for this layer.

create_tensor([name, persistable, dtype])

Create Tensor for this layer.

create_variable([name, persistable, dtype])

Create Tensor for this layer.

eval()

Sets this Layer and all its sublayers to evaluation mode.

extra_repr()

Extra representation of this layer, you can have custom implementation of your own layer.

forward(x, x_mask[, g, inverse])

Calculate forward propagation.

full_name()

Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__

load_dict(state_dict[, use_structured_name])

Set parameters and persistable buffers from state_dict.

named_buffers([prefix, include_sublayers])

Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.

named_children()

Returns an iterator over immediate children layers, yielding both the name of the layer as well as the layer itself.

named_parameters([prefix, include_sublayers])

Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

named_sublayers([prefix, include_self, ...])

Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.

parameters([include_sublayers])

Returns a list of all Parameters from current layer and its sub-layers.

register_buffer(name, tensor[, persistable])

Registers a tensor as buffer into the layer.

register_forward_post_hook(hook)

Register a forward post-hook for Layer.

register_forward_pre_hook(hook)

Register a forward pre-hook for Layer.

set_dict(state_dict[, use_structured_name])

Set parameters and persistable buffers from state_dict.

set_state_dict(state_dict[, use_structured_name])

Set parameters and persistable buffers from state_dict.

state_dict([destination, include_sublayers, ...])

Get all parameters and persistable buffers of current layer and its sub-layers.

sublayers([include_self])

Returns a list of sub layers.

to([device, dtype, blocking])

Cast the parameters and buffers of Layer by the give device, dtype and blocking.

to_static_state_dict([destination, ...])

Get all parameters and buffers of current layer and its sub-layers.

train()

Sets this Layer and all its sublayers to training mode.

backward

register_state_dict_hook

forward(x: Tensor, x_mask: Tensor, g: Optional[Tensor] = None, inverse: bool = False) Union[Tensor, Tuple[Tensor, Tensor]][source]

Calculate forward propagation.

Args:
x (Tensor):

Input tensor (B, in_channels, T).

x_lengths (Tensor):

Length tensor (B,).

g (Optional[Tensor]):

Global conditioning tensor (B, global_channels, 1).

inverse (bool):

Whether to inverse the flow.

Returns:
Tensor:

Output tensor (B, in_channels, T).

Tensor:

Log-determinant tensor for NLL (B,) if not inverse.